Past Events

SAXS Data Analysis with SASview software- May 8

saxlab
May 8, 2024
3:00PM -4:00PM ET
13-4041 (Campus Map: https://whereis.mit.edu/ )

This course is intended to provide users with practical examples of fitting SAXS data with SASview software.

Since most SAXS profiles do not exhibit well defined peaks like crystalline diffraction but instead characteristic "slopes," it is a heavily model-dependent method. After proper data reduction of a SAXS patterns, the data interpretation methods include extracting structural information from standardized plots such as Guinier, Porod, Kratky and Zimm plots. Elements of SAXS data modeling include calculations of the radius of gyration, of the single-particle form factor, inter-particle structure factors and the modeling effects of polydispersity.

 

SAXSLAB Instrument Specific Training - May 8

saxlab
May 8, 2024
1:00PM -3:00PM ET
13-4027 (Campus Map: https://whereis.mit.edu/ )

This course will teach users the basics of data collection using the SAXSLAB instrument.  The SAXSLAB system has automated detector positioning for SAXS/WAXS analyses of samples in capillaries or freestanding films in a transmission geometry and GISAXS/GIWAXS of samples supported on a monolithic substrate in grazing incidence reflection gemoetry. Calibration of the q-range using silver behenate, acquisition of empty, buffer (if sample is immersed in solvent) and dark current exposures for similar timescales and data reduction procedures will be covered. The SAXSLAB instrument is very well suited for analyzing polymers, soft materials, nanoparticles in solution or dried on substrates, porous samples, and nanostructured surfaces. The emphasis in this training session will be design of experiment, routine collection and data reduction.

SAXS - small angle X-ray scattering
WAXS - wide angle X-ray scattering
GISAXS - grazing incidence small angle X-ray scattering

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

PANalytical Empyrean XRPD Instrument Specific Training- May 8

PANalytical Empyrean
May 8, 2024
1:00PM -2:30PM ET
13-4027 (Campus Map: https://whereis.mit.edu/ )

The PANalytical Empyrean diffractometer is an excellent choice for X-ray powder/polycrystalline diffraction measurements with low background. The default mode of this instrument is in Bragg-Brentano parafocusing geometry with CuKa1,Ka2 doublet radiation. Samples can be loaded into a 45-position sample changer to input into the reflection-transmission spinner stage. The instrument has linear position sensitive detector (Pixcel 1D, max count rate: 6.5 x 10^9 cps) which permits rapid data collection up to 255 times faster than with a traditional point detector.

The basic instrument training session will focus on the collection of powder diffraction data using the Bragg Brentano High Definition (BBHD) flat mirror optic, 45-position sample changer, reflection transmission spinner (in reflection geometry) and the Pixcel 1D detector.  This configuration is best suited for high-speed high-resolution data collection from powders and polycrystalline thin films.

Accessories include a Anton Paar CHC+ Cryo-Humidity stage. After you have completed this training, you can request individual training on the humidity stage available with this instrument. 

Users of this instrument should also strongly consider taking a data analysis course to suit their needs, such as the line profile fitting course for crystallite size and microstrain analysis, the Rietveld refinement series for quantitative phase analysis and unit cell analysis, or the Introduction to High Score Plus for qualitative phase identification and database search techniques.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Basics of Small Angle X-ray Scattering (SAXS) Lecture- May 8

saxlab
May 8, 2024
10:00AM -11:00AM ET
13-4041 (Campus Map: https://whereis.mit.edu/ )

This lecture is intended for people who want to become independent self-user of the small or wide angle X-ray scattering (SAXS) instrument in the MRL X-Ray Lab.  SAXS describes the analysis of any sample that has nanostructured (1-100nm) electron density fluctuations -- i.e., nanoparticles in solution, block co-polymers, ionic liquids, soft matter, etc. Typically nanoscale electron density variations arise as structured (nanoscale object in a lattice), unstructured (in solution), or oriented (fiber or affixed to substrate) therefore treatment of each type of sample is on a case by case basis.  

Students must also attend SAXSLAB instrument specific training course to learn how to put the knowledge obtained in the lecture to practice.

This lecture will survey the fundamentals of small angle X-ray scattering (SAXS), focusing on the bare essentials required to productively collect and analyze SAXS data.  In addition to theory, this lecture will cover practical considerations such as common sources of error and a guide to structural interpretation and justification using SAXS patterns.

Bruker Dektak DXT-A Stylus Profilometer Instrument Training - May 8

dektak
May 8, 2024
10:00AM -12:00PM ET
MIT.nano 13-4139

This group training event will focus on the basic theory and operation of the Bruker Dektak DXT-A Stylus Profilometer 
Users will learn about specifics of the instrument capabilities and strategies for data collection and data quality improvement. Users can bring their own (non-hazardous) samples for this training. We will work together until we are both comfortable with your safe and successful operation of the instrument in a shared facility environment. This is usually one session <2hours. Full independent tool access will be granted upon completion of this training session.
 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Bruker Icon XR AFM Basic Training- May 7

May 7, 2024
13:30PM -15:30PM ET
MIT.nano 13-4148

This training event will focus on the basic imaging and operation of the Bruker Icon AFM available at MIT.nano Characterization Facilities. Starting from the basic principles of AFM, users will also learn about cantilever selection and installation, different imaging modes, image quality improvement, and data processing and analysis methods. Users can bring their own samples for this training and SPM probes are provided. Notice, users must supply their own probes for followup qualification sessions. Full independent tool access will be granted upon completion of 2 additional one-on-one supervised use sessions that will be coordinated with the staff member during this small group training.

The Icon XR has many SPM modes including contact and PeakForce tapping mode with ScanAsyst, Magnetic Force Microscopy, Piezo Force Microscopy, conducting atomic force microscopy (AFM). There are also additional features such as electrical characterization from 80 fA to 1 uA with 10 nm spatial resolution, Kelvin Force Probe Microscopy with amplitude or frequency feedback, and pixel-by-pixel quantitative force characterization to probe material properties. Following the basic training session, users can coordinate an advanced mode specific training with the MIT.nano staff.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

FAB.nano Wet Chemical Process Training - May 7

May 7, 2024
1-2:30pm
MIT.nano (12-4001)

The Wet Chemical Process Training provides an introduction for all work with liquid chemicals in Fab.nano. Completion is required for any use of fume hoods or wet benches (including solvents, hands-on training for spin coaters, corrosive hoods and wet benches).

The training is also a prerequisite for 24-hour access to the Fab.nano facility, as it provides the relevant safety foundations.

Laue Instrument Specific Training- May 7

Laue
May 7, 2024
1:00PM - 3:00PM ET
13-4027 (Campus Map: https://whereis.mit.edu/ )

This instrument training will teach users how to use the Multiwire Back-Reflection Laue Diffractometer to determine the orientation of single crystals and to determine if single crystals are possibly twinned.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Fourier Transform Infrared (FTIR) Spectrometer Instrument Training - May 7

FTIR
May 7, 2024
1:00PM -3:00PM ET
MIT.nano 13-4139

This group training event will focus on the basic theory and operation of the Fourier Transform Infrared Spectrometer 
Users will learn about specifics of the instrument configurations, available accessories and strategies for data collection and data quality improvement. Users can bring their own (non-hazardous) samples for this training in whatever form is convenient. We will work together until we are both comfortable with your safe and successful operation of the instrument in a shared facility environment. This is usually one session <2hours. Full independent tool access will be granted upon completion of this training session.
 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

XRF Instrument and Data Analysis Training- May 7

Bruker XRF handheld
May 7, 2024
10:00AM - 11:00AM ET
13-4027 (Campus Map: https://whereis.mit.edu/ )

This course will consist of a lecture teaching the basic principals of XRF analysis and hands-on training how to use the handheld XRF spectrometer and data analysis software to determine the elemental composition of samples.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event.