Past Events

Advanced XRPD Data Analysis Workshop – Structure Models and Profile Fitting - March 29

analytical
1:00PM - 3:00PM ET
13-4041 (Campus Map: https://whereis.mit.edu/ )

This course will teach you how to profile fit data in the program HighScore Plus.  Profile fitting is the first step to quantification of XRPD data.  Profile fitting allows a user to extract precise information about peak position, intensity, and width. Once XRPD data have been profile fit, a variety of calculations are possible. This session will focus on refining unit cell lattice parameters, indexing diffraction data, % crystallinity, and calculating the relative weight fractions of phases in a mixture (quantitative phase analysis). 

Additional workshops will focus on calculating nanocrystallite size and microstrain from peak broadening. 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Quantum Design Inc. Magnetic Property Measurement System (MPMS-3) Introduction Training - March 29

MPMS
11:00AM -1:00PM ET
MIT.nano 13-4139

This group training event will focus on the basic theory and operation of the Quantum Design Inc. Magnetic Property Measurement System (MPMS-3). Users will learn about specifics of the instrument capabilities and strategies for data collection and data quality improvement. 

Please review the MPMS Introduction video prior to the training

After this session you can schedule time to run your sample(s).
 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

FAB.nano 24h Qualification - Mar 29

10:30am to 11:00am
12-4001

All users have lab access during staffed hours (Mo-Th 8am - 9pm; Fr 8am-7pm).  To be able to use the lab after-hours and on weekends, users need to understand how to respond in emergency situations. During the 24h access qualification, a small group of PTC members ask you relevant safety questions that allow you to demonstrate your knowledge. This discussion typically takes 10-15 minutes.

Prior completion of the wet chemical training is required, as it provides the relevant safety foundations. 

 

Basics of EDS in SEM and Instrument Specific Training - Mar 28

1:00PM -4:00PM ET
13-1026 (The Zeiss Merlin SEM lab is in 13-1012 EM suite. You can get to 13-1012 through the black door at the west end of Build 9)

This group training event will focus on the basic operation of the EDAX EDS available at Characterization.nano. This group training will cover theoretical background, software interface and strategies for Data collection. Users can bring their own samples for this training. SEM training is a prerequisite for this training. Full independent tool access will be granted upon completion of this training session.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event.  

Basic SEM training is a prerequisite for this training.

Basic XRPD Data Analysis Workshop – Phase Identification - March 28

analytical
1:00PM - 2:30PM ET
13-4041 (Campus Map: https://whereis.mit.edu/ )

This workshop will introduce you to the X-ray powder diffraction data analysis software "HighScore Plus".  This course will focus on phase analysis (phase ID) using HighScore Plus. Students will be practice using the interface to accomplish basic tasks such as visualizing data, fitting background, peak search; and phase analysis by comparing experimental data to reference patterns and automated search/match.

This course is a pre-requisite for all advanced analysis workshops using HighScore Plus.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Renishaw Invia Reflex Micro Raman Instrument Training - March 28

Raman Reflex
1:00PM -3:00PM ET
MIT.nano 13-4139

This group training event will focus on the basic theory and operation of the Renishaw Invia Reflex Micro Raman
Users will learn about specifics of the instrument capabilities and strategies for data collection and data quality improvement. Users can bring their own (non-hazardous) samples for this training. We will work together until we are both comfortable with your safe and successful operation of the instrument in a shared facility environment. This is usually one session <2hours. Full independent tool access will be granted upon completion of this training session.
 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Bruker HRXRD Instrument Specific Training: Basic Operation and XRR- March 28

D8 HRXRD
10:00AM -12:00PM ET
13-4027 (Campus Map: https://whereis.mit.edu/ )

This class will teach students the basic operation of the Bruker D8 HRXRD instrument.  The emphasis of this class will be on using triple-axis diffraction to collect data from epitaxial thin films.  This session will cover collecting coupled-scans of Bragg peaks and rocking curves.  This class will establish the foundation for collecting reciprocal space maps of epitaxial thin films, but the actual collection of RSMs will be covered in the separate class.  

This class will also cover the basis of collecting X-ray reflectivity (XRR) data from thin films.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Agilent 5100 DVD Inductively Coupled Plasma-Optical Emission Spectrometer Instrument Training -March 28

ICP
10:00AM -12:00PM ET
MIT.nano 13-4148

This group training event will focus on the basic theory and operation of the Agilent 5100 DVD Inductively Coupled Plasma-Optical Emission Spectrometer 
Users will learn about specifics of the instrument capabilities and strategies for data collection and data quality improvement. This is usually two session <2hours each. During the first session we will run a DEMO samples and we will discuss your sample preparation. For your second session Instructor will assist you run your samples.  Second session will be scheduled at the end of this session. We will work together until we are both comfortable with your safe and successful operation of the instrument in a shared facility environment.  Full independent tool access will be granted upon completion of both training sessions.
 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Zeiss Merlin SEM training -March 28

10:00AM -12:00PM ET
MIT.nano 13-1026

This group training event will focus on the basic imaging and operation of the Zeiss SIGMA 300, Zeiss Gemini 450 and Zeiss Merlin SEM's available at Characterization.nano. Users will learn about specifics of the instrument configurations, different imaging detectors available and strategies for image quality improvement. Users can bring their own samples for this training. Full independent tool access will be granted upon completion of 2 additional one-on-one supervised use session that will be coordinated with the staff member during this small group training. 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

PANalytical Empyrean XRPD Instrument Specific Training- March 27

PANalytical Empyrean
1:00PM -2:30PM ET
13-4027 (Campus Map: https://whereis.mit.edu/ )

The PANalytical Empyrean diffractometer is an excellent choice for X-ray powder/polycrystalline diffraction measurements with low background. The default mode of this instrument is in Bragg-Brentano parafocusing geometry with CuKa1,Ka2 doublet radiation. Samples can be loaded into a 45-position sample changer to input into the reflection-transmission spinner stage. The instrument has linear position sensitive detector (Pixcel 1D, max count rate: 6.5 x 10^9 cps) which permits rapid data collection up to 255 times faster than with a traditional point detector.

The basic instrument training session will focus on the collection of powder diffraction data using the Bragg Brentano High Definition (BBHD) flat mirror optic, 45-position sample changer, reflection transmission spinner (in reflection geometry) and the Pixcel 1D detector.  This configuration is best suited for high-speed high-resolution data collection from powders and polycrystalline thin films.

Accessories include a Anton Paar CHC+ Cryo-Humidity stage. After you have completed this training, you can request individual training on the humidity stage available with this instrument. 

Users of this instrument should also strongly consider taking a data analysis course to suit their needs, such as the line profile fitting course for crystallite size and microstrain analysis, the Rietveld refinement series for quantitative phase analysis and unit cell analysis, or the Introduction to High Score Plus for qualitative phase identification and database search techniques.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event.