Past Events

Perkin Elmer 1050 UVVISNIR Spectrophotometer Instrument Training - Apr 10

UvVis
1:00PM -3:00PM ET
MIT.nano 13-4139

This group training event will focus on the basic theory and operation of the Perkin Elmer 1050 UVVISNIR Spectrophotometer
Users will learn about specifics of the instrument capabilities and strategies for data collection and data quality improvement. Users can bring their own (non-hazardous) samples for this training. We will work together until we are both comfortable with your safe and successful operation of the instrument in a shared facility environment. This is usually one session <2hours. Full independent tool access will be granted upon completion of this training session.
 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Basics of Small Angle X-ray Scattering (SAXS) Lecture- April 10

saxlab
10:00AM -11:00AM ET
13-4041 (Campus Map: https://whereis.mit.edu/ )

This lecture is intended for people who want to become independent self-user of the small or wide angle X-ray scattering (SAXS) instrument in the MRL X-Ray Lab.  SAXS describes the analysis of any sample that has nanostructured (1-100nm) electron density fluctuations -- i.e., nanoparticles in solution, block co-polymers, ionic liquids, soft matter, etc. Typically nanoscale electron density variations arise as structured (nanoscale object in a lattice), unstructured (in solution), or oriented (fiber or affixed to substrate) therefore treatment of each type of sample is on a case by case basis.  

Students must also attend SAXSLAB instrument specific training course to learn how to put the knowledge obtained in the lecture to practice.

This lecture will survey the fundamentals of small angle X-ray scattering (SAXS), focusing on the bare essentials required to productively collect and analyze SAXS data.  In addition to theory, this lecture will cover practical considerations such as common sources of error and a guide to structural interpretation and justification using SAXS patterns.

Bruker Dektak DXT-A Stylus Profilometer Instrument Training - Apr 10

dektak
10:00AM -12:00PM ET
MIT.nano 13-4139

This group training event will focus on the basic theory and operation of the Bruker Dektak DXT-A Stylus Profilometer 
Users will learn about specifics of the instrument capabilities and strategies for data collection and data quality improvement. Users can bring their own (non-hazardous) samples for this training. We will work together until we are both comfortable with your safe and successful operation of the instrument in a shared facility environment. This is usually one session <2hours. Full independent tool access will be granted upon completion of this training session.
 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

FAB.nano Wet Chemical Process Training - Apr. 9

1-2:30pm
MIT.nano (12-4001)

The Wet Chemical Process Training provides an introduction for all work with liquid chemicals in Fab.nano. Completion is required for any use of fume hoods or wet benches (including solvents, hands-on training for spin coaters, corrosive hoods and wet benches).

The training is also a prerequisite for 24-hour access to the Fab.nano facility, as it provides the relevant safety foundations.

Laue Instrument Specific Training- April 9

Laue
1:00PM - 3:00PM ET
13-4027 (Campus Map: https://whereis.mit.edu/ )

This instrument training will teach users how to use the Multiwire Back-Reflection Laue Diffractometer to determine the orientation of single crystals and to determine if single crystals are possibly twinned.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

PANalytical X'Pert Pro XRPD- Instrument Specific Training- Apr 9

analytical
1:00PM -2:30PM ET
13-4027 (Campus Map: https://whereis.mit.edu/ )

The PANalytical X'Pert Pro diffractometer is an excellent choice for X-ray powder diffraction (XRPD). The default mode of this instrument is in Bragg-Brentano parafocusing geometry, which is used for polycrystalline materials. We usually keep a linear position sensitive detector on the instrument, which permits rapid data collection for angles higher than 4 degrees 2Theta.

The basic instrument training session will focus on the collection of powder diffraction data using the high-speed optics, which consist of programmable divergence slits and X'Celerator high-speed detector, and the Open Eularian Cradle (OEC) sample stage. This configuration is best suited for high-speed high-resolution data collection from powders and polycrystalline thin films.

Accessories include several different sample stages and optics. After you have completed this training, you can request individaul training on the other configurations available with this instrument. There are three other sample stages that are available: (1) the 15 position automatic sample changer, (2) the furnace that can heat samples up to 1200 C, and (3) the cyrostat that can cool samples down to 11 K. The PANalytical also can be configured parallel-beam optics for grazing incidence X-ray diffraction (GIXD). After you have completed the basic training, you can request individual training on using the other configurations.

Users of this instrument should also strongly consider taking a data analysis course to suit their needs, such as the line profile fitting course for crystallite size and microstrain analysis, the Rietveld refinement series for quantitative phase analysis and unit cell analysis, or the Introduction to High Score Plus for qualitative phase identification and database search techniques.
 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Introductory Zeiss SEM Sigma HD VP training -Apr 9

sigma
1:00PM -3:00PM ET
MIT.nano 12-0191

This group training event will focus on the basic imaging and operation of the Zeiss SIGMA HD VP available at Characterization.nano. Users will learn about specifics of the instrument configurations, different imaging detectors available and strategies for image quality improvement. We'll use standard sample for this training. Full independent tool access will be granted upon completion of 2 additional one-on-one supervised use sessions that will be coordinated with the staff me. 

Active MIT.nano user account  (MUMMS) is required to participate in this training. Please setup an account prior to registering for the training event. 

Fourier Transform Infrared (FTIR) Spectrometer Instrument Training - Apr 9

FTIR
1:00PM -3:00PM ET
MIT.nano 13-4139

This group training event will focus on the basic theory and operation of the Fourier Transform Infrared Spectrometer 
Users will learn about specifics of the instrument configurations, available accessories and strategies for data collection and data quality improvement. Users can bring their own (non-hazardous) samples for this training in whatever form is convenient. We will work together until we are both comfortable with your safe and successful operation of the instrument in a shared facility environment. This is usually one session <2hours. Full independent tool access will be granted upon completion of this training session.
 

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

XRF Instrument and Data Analysis Training- April 9

Bruker XRF handheld
10:00AM - 11:00AM ET
13-4027 (Campus Map: https://whereis.mit.edu/ )

This course will consist of a lecture teaching the basic principals of XRF analysis and hands-on training how to use the handheld XRF spectrometer and data analysis software to determine the elemental composition of samples.

Active MIT.nano user account is required to participate in this training. Please setup an account prior to registering for the training event. 

Characterization.nano New User Orientation - Apr 9

a walkway between two buildings
10:00AM – 11:00AM
MIT Zoom (link will be sent when registering)

Characterization.nano orientation provides an introduction to MIT.nano advanced measurement and characterization capabilities with emphasis on the state-of-the-art equipment located outside the MIT.nano cleanroom facilities and in build 13.

Completion is recommended to those interested in accessing Characterization.nano instrumentation located in the non-cleanroom spaces only. Those seeking to access metrology instrumentation located both inside and outside the cleanroom facilities, have to complete MIT.nano fab and metrology combined orientation. The MIT.nano characterization orientation components include:

  1. Broad overview of the different facilities and capabilities at MIT.nano. Emphasis will be made on advanced imaging and analysis capabilities;
  2. Background on how work is conducted on MIT.nano's shared equipment;
  3. Brief overview of characterization work safety rules;
  4. Virtual Tour through the different characterization lab spaces. Participants are encouraged to ask questions to relate MIT.nano capabilities to their research interests and needs.

After registering, you will get an email with zoom link to the orientation event.